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Chapter 1

Introduction

1.1

Background

Isacc Newton invented calculus in the late 1600’s because the laws of nature were described by differential equations.

¢ Differential equations have applications in physics, meteorology, chemistry, geology, all of the natural sciences.
e The study of DE has changed in the last 25 years. In the past it was strictly recipes to find an explicit formula for the

1.2

solution, which for most equations, you can not. Now with computers, we can approximate solutions very closely, as
well as display the solutions (numerical approximations) and utilize a number of qualitative methods.

You may even use spreadsheets to understand DE’s.

Differential equations is The application of calculus.

Definitions, Terminology, and Solutions

The derivative of a function represents a instantaneous rate of change (slopes of lines tangent to the graph of the function),
and an equation containing derivatives (or differentials) of an unknown function is called a differential equation (DE).

If a differential equation contains derivatives of an unknown function with respect to one independent variable, it is called
an ordinary differential equation (ODE). For example,
dy dy _y dy : d’y _ dy > 2
—=2, —=-=, —=- f, Y +y=ée, —-6—+5y=0, Y =4-
dt dx X odr N Y= e TRy Y o) Y
are ordinary differential equations. A general nth-order, ordinary differential equation with ¢ independent, y dependent

can be written: |

d"y dy d" 'y

=flt,y,—, ...— 1.2.1
dr ! ( Y dr-1 ( )

If a differential equation contains partial derivatives of an unknown function of two or more independent variables, it is

called a partial differential equation (PDE). The following are examples of partial differential equations.

Pu 0 u 62u_ Pu 0 u &*u  Ou

e taa T e T am Tt Gaty =0

Remark: Partial differential equations and their solutions are often more difficult to understand, but to do so requires a
good understanding of ordinary differential equations.

The order of a differential equation is the order of the highest derivative in the equation.

A n-th order differential equation is linear if it can be written in the form

dny . dn—ly
dm " g

d
+ .. +a1d—); +agy=">

where the a’s and b are functions of the independent variable ¢ only', possibly constant or zero. Notice the power of y
and each derivative is 1. If all the a’s are constant the equation is said to have constant coefficients. Also, if b is not

1Tt should be noted that not all problems have independent variable ¢, in fact our text often uses x as the independent variable, in the beginning.
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equal to zero the equation is nonhomogeneous. An equation that is not linear is said to be nonlinear. The following are
examples of nonlinear equations.

By d d
W =2y =x, d—tSy—6d—f+5y2=0, G2 +1=0, d—z+55iny:0

Remark: Nonlinear equations are generally more difficult to understand and often impossible to solve analytically.

e Some examples:

Differential Eqn the order linearity
dp
— =kP I linear
dt
¥=1 % linear
t
t
X =- % non-linear
X
y' +2y =cost ond linear
v’ +2yy’ = cost 2nd non-linear
y" +2y’ =cosy 2nd non-linear
3y + V3y"’ +2y = cost 3nd linear
a* d’ d
J Y 2D iy 4 linear

dxt T7ae T i

A solution to a differential equation is a function (or equation) relating the independent and dependent variables that,
when substituted into the differential equation, satisfy the equation.

o A solution to a differential equation (1.2.1) that can be written in the form y = f() is said to be an explicit solution.

e A relation G(t,y) = 0 is said to be an implicit solution of a differential equation (1.2.1) on an interval I provided it
defines one or more explicit solutions on /.

e A solution with the same number of arbitrary constants as the order of the differential equation is said to be the general
solution.

e Many problems involving differential equations include additional conditions to be satisfied by the general solution.
These conditions fix the arbitrary constants of the general solution to give a particular solution.

e The problem of solving a differential equation subject to additional conditions at a single value is called an initial value
problem (IVP) and the additional conditions appropriately called initial conditions. For example, the problem
dy
2 100-y, y0)=25
I y, y(0)
is a first-order (linear) initial value problem. The initial condition specified at the value ¢ = 0.

e Geometrically, the initial condition y(xy) = y, identifies a unique (particular) integral curve that passes through the point
(x0, o) out of the entire family of integral curves.

e The problem of finding a solution subject to conditions at two (or more) values is called a boundary value problem. For
example, the problem
d*y e
7l + 9y = sin 3¢
y0) =1, y(0) = -1

is a second order (linear) initial value problem. The initial conditions specified at the value ¢ = 0. The problem,
d*y
— =-x+1
-
y(0)=0,y(0)=0, y"(1) =0, y"(1) =0
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is a fourth order (linear) boundary value problem. The additional conditions specified at x = 0 and x = 1. A solution to
either problem is a solution of the differential equation that also satisfies the additional conditions.

o A solution that is constant is called a stationary or equilibrium solution. For example, the equation

dy 3 2
— =y -y —-12
dr y =y y

has the three equilibrium solutions y(¢) = 0, y(¢) = 4, and y(f) = —3. Each solution is such that dy/dt = 0 for all ¢ = 0.

o Often differential equations contain a parameter(s) to be specified later. A parameter is a value that does not depend
on the independent variable but can assume different values depending on the specifics of the problem. Changing a
parameter often changes the behavior of the solutions, sometimes drastically.

e Two or more differential equations in two or more unknowns (dependent variables) considered together is called a system
of differential equations. The order of a system is the order of the highest derivative in the system. For example, the two

equations
d
d—: = S5x-—x*—4xy
dy
— = =2y+3
dr Yy T OXy

is a first order (nonlinear) system with independent variable ¢ and unknowns x and y. Notice the equations are “coupled”
in that the variable y occurs in the dx/dt equation and x occurs in the dy/dt equation.

1.2.1 Existence and Uniqueness

o Two natural questions arise in considering a problem involving a differential equation.
Does a solution exist? If so, is it unique?

Geometrically, given a point (¢, yp), does the differential equation dy/dt = f(¢,y) have a solution whose graph passes
through the point, and if it does, is there one such solution? In any problem it is desirable to know there is a solution
before one spends too much time trying to solve it.

Theorem 1.2.1: Existence and Uniqueness

Consider the initial value problem

d
d—i = f(t.y), y(o) = yo.

If f(¢,y) and df/dy are continuous at the point (#), yp) then there exists an interval centered at ) and unique
function y(¢) defined on the interval that is a solution to the initial value problem.

Remark: One can “separate” the ideas of existence and uniqueness. If f(¢,y) is continuous at (fy, yp) then at least one
solution exists. If df/dy is continuous at (fy, yo) then the solution is unique.

Remark: The above does not say how large of an interval on which the solution will exist, merely that a solution exists
on some interval. Most often the interval can only be determined after actually solving the problem.

Remark: A consequence of uniqueness is that two solutions can not be at the same place at the same time, that is they
can not cross in the ry-plane. If they do then the solutions are the same.

For many problems of mathematics, determining whether a solution exists is a very difficult problem in itself. The
question of existence of solutions is often separate from how to actually find a solution (if any) Moreover, the uniqueness
of a solution (if any) is itself a problem that is often not easy.
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1.3 Direction Fields

e In the first order equation’
dy
= = f(t,
7 =Sy

the left hand side dy/dt represents the rate of change of y with respect to 7 (or the slope of the solution curve) and the right
hand side f(z,y) gives the value of the rate (or slope) at the point (¢, y). If the right hand side does not depend explicitly
on t, thatis dy/dt = f(y), the differential equation is said to be autonomous. If the right hand side does depend explicitly
on £, the differential equation is said to be nonautonomous.

METHOD: DIRECTION FIELD

A direction field gives a rough (qualitative) idea of the graphs of solutions to the differential equation dy/dt =
f(t,y). Sketching a direction field consists of selecting many (¢, y) points in the fy-plane and drawing at each
point a “minitangent” whose slope is the value f(z,y). Solution curves then follow the tangents.

T T T T T T T T
R RS \ ~
I ~ s/
sl 1oL = Ve
Voo / A
AR / /]
20 NNN / VAR AR B
NN~ / /o
1~ - = / V2V
— v /oSS
//////// — — = —
S S G p— ~ ~ T~ ™~ =
= N NN N N
A N NN
s \ VAN
ol s s \ AU W W S
VARV \ VAV
Il \ AU
Sropr N NN VYT
I ~ NN
N R / =
1 1 1 1 1 1 1 1
-1 0 1 3 4 5 6 7 8

Figure 1.1: The direction field and various solution curves of y’ = %y(t - %yz). Notice
the equilibr ium solution y = 0 and the long term behavior (+ — co) of most solutions
as determined by = 1y”.

1.3.1 Phase Lines

e A phase line gives qualitative information about solutions of an autonomous differential equation.

2The most general form of a first order differential equation is denoted F(z,y,y’) = 0 but we assume this can be solved for the first derivative to give
Yy = f(t,y). There are equations where this can not be done.
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MEeTtHOD: PHASE LINE

For the equation dy/dt = f(y) one can sketch a phase line containing all the information about the equilibrium
solutions and whether other solutions are increasing or decreasing. To sketch:

1. Draw a y-line.

2. Find the equilibrium solutions, the values of y such that f(y) = 0, and mark them as points on the line.
Also, mark the values for which f(y) does not make sense. Notice that doing this breaks the line up into
distinct intervals.

3. For each interval determine whether f(y) > 0 or f(y) < 0. In intervals for which f(y) > 0, draw up
arrows as y is increasing (dy/dt > 0). In intervals for which f(y) < 0, draw down arrows as y is decreasing
(dy/dt < 0).

e An equilibrium solution is called a sink if all solutions that start sufficiently close to it move towards it as ¢ increases.
An equilibrium solution is called a source if all solutions that start close to it move away from it as ¢ increases. An
equilibrium solution that is neither a source nor a sink is called a saddle. A sink is an example of a stable solution.
Sources and saddles are examples of unstable solutions.

60

y=3 ® saddle (unstable)
50
dy/dt undefined at y=2

40t

y=0 ® source (unstable)

20

y=-4 ® sink (stable)

—10f

5 4 -3 -2 -1 0 1
y

Figure 1.2: The graph f(y) = y(yg_)—%;s)z and phase line for dy/dt = f(y).

e The Linearization Theorem can be used to determine whether an equilibrium solution y, of the differential equation
dy/dt = f(y) is a sink or source. If f'(y9) < O then yj is a sink and if f’(yy) > O then it is a source. Note that if f'(yy) =0
or if f'(yo) does not exist then we need more information to determine the type (source, sink, or saddle) of yy.

1.3.2 Isoclines

An isocline for the differential equation
dy
T fxy)
dy

is the set of all points in the plane where the solutions have the same slope, 7

1.4 Euler’s Method

e Euler’s method can be used to approximate the solution of the initial value problem dy/dt = f(t,y), y(to) = yo. The
method consists using a small “step” At > 0 and the approximation dy/dt ~ Ay/At to approximate the true solution
Y(ter1) wWith yee1 = v + f(#, yr)At. Geometrically, the approximate solution consists of connected line segments of slopes
determined by f(z,y).
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e Euler’s method is an example of a numerical method, there are many other better numerical methods. An approximate
solution found using a numerical method is called a numerical solution.

MEetHOD: EULER’S METHOD

To numerically approximate the solution of the initial value problem

dy_

i f@&y), ¥(t) = yo

at equally spaced numbers #4, fo, ..., I, ...,
1. INPUT the initial conditions %y, yo and step size At.
2. Fork=0,1,2,... do 3 through 5,
3. Evaluate yr1 = yr + f(#, yi)At.
4. Compute ;41 = 1y + At.

5. OUTPUT (1. y).

¢ A numerical solution is an approximate to the true solution, it is inherently inaccurate. The absolute error (at any time
t;) in the approximation is defined to be |true value — approximate value |. The relative error is defined to be

|true value — approximate value |

|true value|

It should be noted however that often the true values are not known and the errors above can not be computed.

Remark: Decreasing the step size At often results in greater accuracy but at the expense of more work. Rather than more
work, it is often advantageous to use another numerical method such as an improved Euler’s method, a Runge-Kutta
method, an Adams-Bashforth/Adams-Moulton method, among others. Euler’s method, though attractive in its simplicity,
is seldom used in real applications.

e Vi true value error

1.0 1.0000 1.0000  0.0000
1.1 1.2000 1.2337  0.0337
1.2 1.4640 1.5527  0.0887
1.3 1.8154 1.9937  0.1784
14 22874 26117 03244
1.5 29278 34904  0.5625

I I I I I
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 15

Figure 1.3: Euler’s method (to four decimal places) for dy/dt = 2ty, y(1) = 1 and Ar = 0.1.



