Scilab: Linear Algebra Quick Reference

Matrix and Vector Components

$A=[12 ; 34]$	Matrix definition
A(i, j)	Entry in row i, column j
A(i,:)	Row i as vector
A($:, j$)	Column j as vector
diag(A)	Diagonal entries as vector
A(r_1:r_2,c_1:c_2)	Submatrix
tril(A)	Lower triangular part of matrix
triu(A)	Upper triangular part of matrix
$\mathrm{v}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$	Row vector definition
$\mathrm{v}=[1 ; 2 ; 3]$	Column vector definition
v (i)	i th entry in v

Matrix and Vector Operations

A,	Transpose
$\mathrm{A}+\mathrm{B}$	Sum of matrices
$\mathrm{A} * \mathrm{~B}$	Product of matrices
A.*B	Component-wise product of matrices
A.*.B	Kronecker product of matrices
$\mathrm{A} * * \mathrm{n}$	Matrix power A^{n}
$\operatorname{sum}(\mathrm{v} \cdot * \mathrm{~W})$	Dot product of v and w
$\operatorname{cross}(\mathrm{v}, \mathrm{w})$	Cross product of v and w

Updated January 27, 2019
Dr. Lauren Williams
Mercyhurst University
math.mercyhurst.edu
Department of Mathematics

Special Matrices

$\operatorname{eye}(\mathrm{n}, \mathrm{n})$	$n \times n$ identity matrix
$\operatorname{zeros}(\mathrm{m}, \mathrm{n})$	$m \times n$ zero matrix
$\operatorname{ones}(\mathrm{m}, \mathrm{n})$	$m \times n$ matrix with all entries 1
$\operatorname{rand}(\mathrm{~m}, \mathrm{n})$	$m \times n$ random matrix
$\operatorname{diag}([1,2,3])$	Diagonal matrix
$\operatorname{linspace}(\mathrm{s}, \mathrm{e}, \mathrm{i})$	Vector beginning at s, ending at e, with i equally distant entries

Matrix Propertias

$\operatorname{rref}(A)$	Reduced echelon form of A
$\operatorname{det}(A)$	Determinant of A
$\operatorname{inv}(A)$	Inverse of A
$\operatorname{sqrtm}(A)$	Square root of A
$\operatorname{trace}(A)$	Race of A
$\operatorname{rank}(A)$	Kernel (nullspace) of A
$\operatorname{kernel}(A)$	Eigenvalues of A
$\operatorname{spec}(A)$	a is matrix of eigenvectors, b is
$\left[\begin{array}{ll}\text { b }]=\operatorname{spec}(A) & \text { Dimenal matrix of eigenvalues }\end{array}\right.$	
$\operatorname{size}(A)$	Returns true if A is square matrix
$\operatorname{issquare(A)}$	Greatest entry in A
$\max (A)$	Least entry in A
$\min (A)$	Singular values of A
$\operatorname{svd}(A)$	Orthogonal basis of A
$\operatorname{crth}(A)$	Cofactors of A
$\operatorname{coffg}(A)$	

Vector Properties

$\operatorname{norm}(v)$	Vector length of v (magnitude)
$\operatorname{length}(v)$	Dimension of v (number of entries)
$\operatorname{sum}(v)$	Sum of entries in v
$\operatorname{prod}(v)$	Product of entries in v
$\max (v)$	Greatest entry in v
$\min (v)$	Least entry in v

Elementary Row Operations

	Interchange row i and j
A (i, : $)=\mathrm{c} * \mathrm{~A}(\mathrm{i},:$)	Multiply row i by c
$A(i,:)=A(i,:)+c * A(j,:)$	Add c times row j to row i

COMPONENTS OF NUMBERS

$\operatorname{int}(x)$	Integer part of x
round (x)	Round x to nearest integer
floor (x)	$\lfloor x\rfloor$, greatest integer less or equal to x
$\operatorname{ceil}(x)$	$\lceil x\rceil$, smallest integer greater or equal to x
$\operatorname{sign}(x)$	Sign; 1 if $x>0,-1$ if $x<0,0$ if $x=0$
$\operatorname{complex}(a, b)$	Define complex number $a+b i$
$\operatorname{conj}(x)$	Complex conjugate of x
$\operatorname{real}(x)$	Real part of complex number x
$\operatorname{imag}(x)$	Imaginary part of complex number x
fix (A)	Matrix A with all entries rounded down

POLYNOMIALS

$\operatorname{poly}\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], '^{\prime} X^{\prime},{ }^{\prime} C^{\prime}\right)$	Polynomial $3 x^{2}+2 x+1$
$\left.\operatorname{poly}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right], X^{\prime} X^{\prime}, r^{\prime}\right)$	Polynomial in x with roots $1,2,3$
$\operatorname{poly}\left(\operatorname{spec}(A),{ }^{\prime} X^{\prime}, r^{\prime}\right)$	Characteristic polynomial of A
$\operatorname{roots}(p)$	Roots of polynomial p

MATRIX DECOMPOSItIon

[L U] $=\operatorname{lu}(\mathrm{A})$	U upper triangular, $A=L U$
[L U E] = lu(A)	U upper triangular, L lower triangular, E permutation matrix, $E A=L U$
$[\mathrm{Q} R]=\mathrm{qr}(\mathrm{A})$	Q orthogonal, R upper triangular, $A=Q R$
[Q R E] = $\mathrm{qr}(\mathrm{A})$	Q orthogonal, R upper triangular, E permutation matrix, $A E=Q R$
[U S V] $=\operatorname{svd}(\mathrm{A})$	S diagonal, U, V unitary, $A=U S V^{T}$

Components of Numbers

$\operatorname{int}(\mathrm{x})$	Integer part of x
$\operatorname{round}(\mathrm{x})$	Round x to nearest integer
$\operatorname{floor}(\mathrm{x})$	$\lfloor x\rfloor$, greatest integer less or equal to x
$\operatorname{ceil}(\mathrm{x})$	$\lceil x\rceil$, smallest integer greater or equal to x
$\operatorname{sign}(\mathrm{x})$	Sign; 1 if $x>0,-1$ if $x<0,0$ if $x=0$
$\operatorname{complex}(\mathrm{a}, \mathrm{b})$	Define complex number $a+b i$
$\operatorname{conj}(\mathrm{x})$	Complex conjugate of x
$\operatorname{real}(\mathrm{x})$	Real part of complex number x
$\operatorname{imag}(\mathrm{x})$	Imaginary part of complex number x
$\operatorname{fix}(A)$	Matrix A with all entries rounded down

