SCILAB: LINEAR ALGEBRA QUICK REFERENCE

MATRIX AND VECTOR	Components
A = [1 2; 3 4]	Matrix definition
A(i,j)	Entry in row <i>i</i> , column <i>j</i>
A(i,:)	Row <i>i</i> as vector
A(:,j)	Column j as vector
diag(A)	Diagonal entries as vector
A(r_1:r_2,c_1:c_2)	Submatrix
tril(A)	Lower triangular part of matrix
triu(A)	Upper triangular part of matrix
v = [1 2 3]	Row vector definition
v = [1; 2; 3]	Column vector definition
v(i)	<i>i</i> th entry in <i>v</i>

SPECIAL MATRICES	
eye(n,n)	$n \times n$ identity matrix
zeros(m,n)	$m \times n$ zero matrix
ones(m,n)	$m \times n$ matrix with all entries 1
rand(m,n)	$m \times n$ random matrix
diag([1,2,3])	Diagonal matrix
linspace(s,e,i)	Vector beginning at s , ending at e , with i equally distant entries

MATRIX PROPERTIES		
rref(A)	Reduced echelon form of A	
det(A)	Determinant of A	
inv(A)	Inverse of A	
sqrtm(A)	Square root of A	
trace(A)	Trace of A	
rank(A)	Rank of A	
kernel(A)	Kernel (nullspace) of A	
spec(A)	Eigenvalues of A	
[a b] = spec(A)	<i>a</i> is matrix of eigenvectors, <i>b</i> is diagonal matrix of eigenvalues	
size(A)	Dimensions of matrix as vector	
issquare(A)	Returns true if A is square matrix	
max(A)	Greatest entry in A	
min(A)	Least entry in A	
svd(A)	Singular values of A	
orth(A)	Orthogonal basis of A	
coffg(A)	Cofactors of A	

MATRIX AND VECTOR OPERATIONS

Α'	Transpose
A+B	Sum of matrices
A*B	Product of matrices
A.*B	Component-wise product of matrices
A.*.B	Kronecker product of matrices
A**n	Matrix power A ⁿ
sum(v.*w)	Dot product of v and w
cross(v,w)	Cross product of v and w

Updated January 27, 2019 Dr. Lauren Williams Mercyhurst University

math.mercyhurst.edu Department of Mathematics

VECTOR PROPERTIES

A(i,:) = c*A(i,:)

norm(v)	Vector length of v (magnitude)
length(v)	Dimension of v (number of entries)
sum(v)	Sum of entries in v
prod(v)	Product of entries in v
max(v)	Greatest entry in v
min(v)	Least entry in v

POLYNOMIALS	
poly([1 2 3],'x','c')	Polynomial $3x^2 + 2x + 1$
poly([1 2 3],'x','r')	Polynomial in <i>x</i> with roots 1,2,3
<pre>poly(spec(A),'x','r')</pre>	Characteristic polynomial of A
roots(p)	Roots of polynomial p

MATRIX DECOMPOSIT	ION
[L U] = lu(A)	U upper triangular, $A = LU$
[L U E] = lu(A)	U upper triangular, L lower triangular, E permutation matrix, $EA = LU$
[Q R] = qr(A)	Q orthogonal, R upper triangular, $A = QR$
[Q R E] = qr(A)	Q orthogonal, R upper triangular, E permutation matrix, $AE = QR$
[U S V] = svd(A)	S diagonal, U, V unitary, $A = USV^T$

COMPONENTS OF	NUMBERS	COMPONENTS O	F NUMBERS
int(x)	Integer part of x	int(x)	Integer part of x
round(x)	Round x to nearest integer	round(x)	Round <i>x</i> to nearest integer
floor(x)	$\lfloor x \rfloor$, greatest integer less or equal to x	floor(x)	$\lfloor x \rfloor$, greatest integer less or equal to x
ceil(x)	$\lceil x \rceil$, smallest integer greater or equal to x	ceil(x)	$\lceil x \rceil$, smallest integer greater or equal to x
sign(x)	Sign; 1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$	sign(x)	Sign; 1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$
complex(a,b)	Define complex number $a + bi$	complex(a,b)	Define complex number $a + bi$
conj(x)	Complex conjugate of <i>x</i>	conj(x)	Complex conjugate of x
real(x)	Real part of complex number x	real(x)	Real part of complex number x
imag(x)	Imaginary part of complex number x	imag(x)	Imaginary part of complex number x
fix(A)	Matrix A with all entries rounded down	fix(A)	Matrix A with all entries rounded down

PERATIONS	ELEMENTARY ROW O
Interchange re	A([i j],:)= A([j i],:)

Interchange row i and jMultiply row *i* by *c* Add *c* times row *j* to row *i* A(i,:) = A(i,:)+c*A(j,:)