The Alternating Group

Theorem 1
Every permutation can be written as a product of transpositions (2-cycles), though these cycles will not necessarily be disjoint. In particular, each k-cycle $(x_1\ x_2\ x_3\ \cdots\ x_{k-1}\ x_k)$ in the permutation can be written as the product
$$(x_1\ x_k)(x_1\ x_{k-1})\cdots(x_1\ x_3)(x_1\ x_2)$$

Example Some permutations are easier than others:

$$\pi = (1\ 4)(2\ 5)(3\ 6)$$
is already a product of (disjoint) transpositions. However, the permutation

$$\tau = (1\ 4\ 2\ 8)(3\ 5\ 7)(6)$$
could be written as the (non-disjoint) product of transpositions

$$\tau = (1\ 8)(1\ 2)(1\ 4)(3\ 7)(3\ 5)(1\ 6)(1\ 6)$$

Note that we dealt with the 1-cycle by sending 6 to 1 and 1 back to 6; we could have used any number in place of 1 here.

There are many choices when writing permutations as a product of transpositions; in fact, each permutation could be written as a product of transpositions in an infinite number of ways.

Definition
Let π be a permutation that can be written as a product of c transpositions. If c is even, we say π is **even**, and if c is odd, we say π is **odd**. This property of a permutation is referred to as its **sign** (sometimes parity), denoted $\text{sgn}(\pi)$.

Theorem 2
Every permutation is either even or odd. If π is even, then every representation of π as a product of transpositions will contain an even number of transpositions. Similarly, if π is odd, it can only be written with an odd number of transpositions.

Both π and τ in the previous example are odd. We could write π as a product of any odd number of transpositions (at least 3, anyway) but we could not write it as a product of 8 transpositions.

Definition
Let A be a set with n elements. The set of even permutations on A form a group under composition called the **alternating group of degree** n, denoted A_n. It is a subgroup of S_n, the group of permutations on A.

Theorem 3
The order of A_n is $n!/2$. That is, exactly half of the permutations in S_n are even.

Example The group A_3, the alternating group on a set of 3 elements, contains $3!/2 = 3$ permutations:

$$A_3 = \{(1)(2)(3), (1\ 2\ 3), (1\ 3\ 2)\}$$