

LINEAR ALGEBRA

SECTION 01 MTWF 2:00 - 2:50 PM HIRT 305

INSTRUCTOR

Dr. Lauren Williams Old Main 404 lwilliams@mercyhurst.edu (814) 824-2226

OFFICE HOURS

- Monday 12:00 12:50
- Monday 4:00 5:00
- Tuesday 9:00 10:00
- Tuesday 1:00 1:50
- Wednesday 12:00 12:50

and by appointment

Friday 8:00 - 8:50

Course Description

This is a one semester course in linear algebra with computer applications. We will be covering the following topics: matrices and matrix properties, vectors and vector spaces, linear systems, and linear transformations. The class lectures will focus primarily on definitions and theory, with some simple calculations being performed without the aid of a computer. We will also have time dedicated to applying the ideas learned in class to actual problems.

MATH 150

FALL 2021

Topics will include vectors and vector arithmetic, solutions of linear systems, Gaussian elimination, inner products, vector spaces and subspaces, the four fundamental subspaces, determinants, eigenvalues and eigenvectors, symmetry, linear transformations, and applications.

COURSE OBJECTIVES

On successful completion of the course, students should be able to:

- describe the solution(s) of a system of linear equations, or decide that one does not exist.
- perform arithmetic operations on vectors and matrices, where defined.
- calculate the determinant of a matrix, and understand its significance.
- define a vector space and determine whether or not a set is a vector space.
- find the basis and dimension of a vector space.
- define and identify linear transformations and their properties.
- define and compute eigenvalues and eigenvectors.
- explain the geometric effect of a linear transformation on 2dimensional and 3-dimensional spaces.

DR. WILLIAMS' WEBSITE: https://www.integral-domain.org/lwilliams/

PREREQUISITES

Math 170 or equivalent, or instructor permission.

REQUIRED MATERIALS

Textbook

Linear Algebra and its Applications, by David Lay, Steven Lay, and Judi McDonald, 5th Edition. If you have a different edition of the textbook, it is up to you to make sure the sections and assigned problems are the same.

You will not be expected to bring your textbook to class. If you prefer to purchase or rent an electronic version of the text, you are welcome to do so.

COURSE COMPONENTS

Quizzes

Keeping up with the homework will ensure that you are prepared for the quizzes, which will feature problems very similar to those in the homework. Quiz grades will not be based strictly on whether or not you found the correct answer. Your work must also be written clearly, and with proper notation, to receive full credit.

If you miss a quiz, you must make arrangements to take it before the graded quizzes are returned to the class; this will typically be the next class meeting.

Exams

There will be two midterm exams given throughout the semester, in addition to a final exam. The material on the exams will be similar to topics covered on quizzes and homework. All exams should be considered cumulative; each exam will include some material from the previous exams.

If you need to miss class during a scheduled exam for a documented, excused reason (illness, family emergency, athletics), you will be able to make up the exam. You must schedule a time to retake any exam within one week of the day the exam was given in class.

LABS

While understanding the theory and mechanics of linear algebra is critical to truly applying it, the majority of the calculations we'll do "by hand" in class are actually done by a machine in the real world.

To help balance these two sides of linear algebra, we'll use most of our Tuesday class meeting time to explore applications and see how a computer algebra system (CAS) can make our work easier and faster.

In particular, we'll be experimenting with several libraries developed in the Python programming language. You will not have any required lab assignments for this course. Instead, consider the lab meetings as a kind of "show and tell" for linear algebra.

You will not need any supplies for these lab meetings. If you have a laptop, you are welcome to bring it and follow along or experiment on your own.

Grading

Your final grade will be calculated as follows:

Component	Value	Total Points
Quizzes (8 best)	20 points each	160 points
Exams (2)	100 points each	200 points
Final Exam	140 points each	$140 {\rm points}$
		500 points

Your letter grade will be based on the total number of points you earn throughout the semester:

Grade	Percentage	Points Needed
А	90	448
B+	87	433
В	80	398
C+	77	383
С	70	348
D+	67	333
D	60	298

OTHER COURSE INFORMATION

- If you are struggling with a topic, please come to office hours as soon as possible. Tutoring for this course can not be expected through our usual department tutors, but it may be possible to arrange private assistance. Don't let yourself fall behind!
- There are other linear algebra textbooks available in the library and in my office. Due to book prices, you may not want to invest in a second book, but it can be helpful to have alternate sources or see topics explained in other ways. Two free texts available online:
 - Linear Algebra, by Jim Hefferon, Saint Michael's College http://joshua.smcvt.edu/linearalgebra/
 - A First Course in Linear Algebra, by Robert Beezer, University of Puget Sound http://linear.ups.edu/
- You are free to use any electronics (phone, tablet, laptop, etc) in class, but please use devices in a way that does not distract other students in the class.

ADA and Learning Differences

Mercyhurst University is committed to making reasonable accommodations for qualified students, and employees with disabilities as required by law. Please refer to the HUB

https://lakersmercyhurst.sharepoint.com/sites/StudentsHub

and select the Services tab, then ADA Accommodations from the dropdown for instructions to request an accommodation. You may also contact Susan Reddinger, ADA Coordinator, ADA@mercyhurst.edu, 814-824-2362, Egan Hall 200. For students with questions about Academic Support, please refer to the HUB

https://lakersmercyhurst.sharepoint.com/sites/StudentsHub

and select the Academic Resources tab, then Academic Support for more information.

TITLE IX INFORMATION

Mercyhurst is committed to providing an environment free from sex discrimination, including sexual harassment and sexual violence. Please refer to the HUB:

https://lakersmercyhurst.sharepoint.com/sites/StudentsHub

and select the Resources tab, then Title IX – Sexual Respect from the dropdown for more information. If you would like to file a sexual misconduct complaint, please contact Ann Miller, Title IX Coordinator and Compliance Officer, titleix@mercyhurst.edu, 814-824-2363. Please be aware that in compliance with Title IX, educators must report incidents of sexual assault/harassment, stalking, and domestic/dating violence. If you disclose any of these situations in class, in papers, or to me personally, I am required to report it to the Title IX Coordinator (or any of the Deputy Title IX Coordinators).

Academic Honesty

Students are required to uphold academic integrity throughout the course. In particular, plagiarism of any sort, unauthorized collaboration on exams, quizzes and other assignments, and other incidences of academic dishonesty will be handled according to the policies set forth in the Student Handbook.

COURSE EVALUATIONS

Near the end of the semester, you will be asked to complete an online course evaluation. The evaluation will be completed in class during the last two weeks of the semester using any laptop, tablet, or mobile device. The response tool allows you to note aspects of the course that helped you learn, as well as aspects that might be modified to help future students learn more effectively. You will receive an email letting you know when the evaluation window for our class is open. Please note that these course evaluations are anonymous and instructors do not see the results until after the grades for the course are submitted.

Covid

Masks

University policy requires all individuals to wear face coverings while indoors on campus. Masks are not required while sitting alone at your office desk or while eating.

Food and Drink in the Classroom

In light of the COVID-19 situation, eating is not permitted in classrooms, labs, or other academic spaces. A water bottle or cup with a lid (and preferably a straw) is permitted to be used in classrooms and labs to help prevent a student from becoming dehydrated. Masks should be pulled only slightly away from the bottom of the face to take a quick drink and immediately replaced to cover the mouth and nose.

Homework

Suggested problems from the textbook for each section we will cover are included in this syllabus. Your work will not be collected. However, actually working through these problems is the key to your success in this class. Attending every class is not enough; mathematics can only be learned through practice. It is expected that you spend approximately 8-12 hours per week studying the material outside our class meetings, according to the typical 2-3 hours per credit rule.

Most of the problems will have solutions in the back of the textbook. Make sure to check your work. The exams will be based primarily on these problems. While you are encouraged to work together on the homework, be sure you understand all material on your own before a quiz or exam.

Sec.	Problems
1.1	1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 26
1.2	1, 5, 7, 9, 11, 13, 15, 19
1.3	1,5,9,11,13,15,19,23
1.4	1, 5, 7, 9, 11, 13, 15, 21, 25, 37
1.5	1, 3, 5, 7, 9, 11, 33, 35
1.7	1, 3, 5, 7, 9, 11, 15-20, 21, 29, 31
1.8	1, 3, 5, 9, 11, 13, 15, 17
1.9	1, 3, 9, 15, 17, 19, 21, 37
2.1	1, 3, 5, 7, 9, 11, 12, 15, 23, 27
2.2	1, 3, 5, 7, 9, 17, 18, 29, 31, 33
2.3	1, 3, 5, 7, 9, 13, 15, 23, 33
2.5	3, 5, 9, 11, 19
3.1	1, 3, 5, 9, 11, 13, 19, 21, 23, 37, 41
3.2	15, 17, 19, 21, 23, 25, 27, 29, 33, 35, 37, 39
3.3	1, 3, 5, 7, 19, 21, 23, 27
4.1	1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 21
4.2	1, 3, 5, 7, 9, 11, 23
4.3	1, 3, 5, 7, 9, 15, 19, 21
4.5	1, 3, 5, 7, 9, 11, 13, 15, 17, 25
4.7	1, 7, 9
5.1	1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 24
5.2	1, 3, 5, 7, 9, 13, 15, 21
5.3	1, 5, 7, 9, 11, 21, 27
5.5	1, 3, 5
6.1	1, 3, 5, 7, 9, 11, 15, 17, 19, 23, 25, 27
6.2	1, 5, 9, 11, 13
6.4	1, 5, 11, 15

MATH 150 LINEAR ALGEBRA - FALL 2021 SEMESTER SCHEDULE

Monday	Tuesday	Wednesday	Friday
		Aug 25	Aug 26
		Class Intro	1.1 Systems of Linear Equations
Aug 30 Add/Drop Deadline	Aug 31	Sep 1	Sep 3 Quiz
1.1 Systems of Linear Equations	Lab: Intro to Python	1.2 Row Reduction and Echelon Forms	1.2 Row Reduction and Echelon Forms
Sep 6	Sep 7	Sep 8	Sep 10 Quiz
Labor Day	Lab: Interpolation	1.3 Vector Equations	1.4 The Matrix Equation $Ax = b$
Sep 13	Sep 14	Sep 15	Sep 17 Quiz
1.5 Solution Sets of Linear Equations	Lab: Consumption Matrices	1.7 Linear Independence	1.8 Introduction to Linear Transformations
Sep 20	Sep 21	Sep 22	Sep 24 Quiz
1.8 Introduction to Linear Transformations	Lab: Leslie Models	1.9 The Matrix of a Linear Transformation	2.1 Matrix Operations
Sep 27	Sep 28	Sep 29	Oct 1
2.2 The Inverse of a Matrix	Lab: Color Transformation	Exam I	2.2 The Inverse of a Matrix
Oct 4	Oct 5	Oct 6	Oct 8 Quiz
2.3 Characterizations of Invertible Matrices	Lab: Matrices in Physics and Engineering	2.5 Matrix Factorization	2.5 Matrix Factorization
Oct 11	Oct 12	Oct 13	Oct 15
3.1 Introduction to Determinants	Lab: Hill Ciphers	3.1 Introduction to Determinants	Fall Break
Oct 18	Oct 19	Oct 20	Oct 22 Quiz
3.2 Properties of Determinants	Advising Day	3.2 Properties of Determinants	3.3 Cramer's Rule
Oct 25	Oct 26	Oct 27	Oct 29 Quiz
4.1 Vector Spaces and Subspaces	Lab: Principal Component Analysis	4.1 Vector Spaces and Subspaces	4.2 Null Spaces, Column Spaces
Nov 1	Nov 2	Nov 3	Nov 5
4.3 Linearly Independent Sets and Bases	Lab: Linear Algebra Meets Statistics	Exam II	4.5 The Dimension of a Vector Space, 4.6 Rank
Nov 8	Nov 9	Nov 10	Nov 12 Quiz
4.5 The Dimension of a Vector Space, 4.6 Rank	Lab: Coordinate Systems	5.1 Eigenvectors and Eigenvalues	5.1 Eigenvectors and Eigenvalues
Nov 15	Nov 16	Nov 17	Nov 19 Quiz
5.2 The Characteristic Equation	Lab: Page Rank	5.3 Diagonalization	5.3 Diagonalizations
Nov 22	Nov 23	Nov 24	Nov 26
5.3 Diagonalization	Lab: Data Clustering	Thanksgiving Break	Thanksgiving Break
Nov 29	Nov 30	Dec 1	Dec 3 Quiz
5.4 Eigenvalues and Linear Transformations	Lab: Complex Numbers	6.1 Inner Product, Length, Orthogonality	6.1 Inner Product, Length, Orthogonality
Dec 6	Dec 7	Dec 8	Dec 10
6.2 Orthogonal Sets	Lab: Gram-Schmidt	Review/Recap	Reading Day
Dec 13	Dec 14	Dec 15	
		Final Exam 1-3 pm	